ST - STM32Cube.AI v7.2现可支持深度量化神经网络
出处:厂商供稿 发布于:2022-09-30 15:58:15
STM32Cube.AI: 从研究到实际软件
神经网络是什么?
量化神经网络和二值化神经网络分别是什么?
开发人员在节点内使用权重和偏差两种参数来决定信息在神经网络上的传播方式。在数据通过网络时,这两个参数将会影响数据。权重是系数。当权重越复杂,网络输出越准确,但算量也随即增大。每个节点还用激活函数来确定如何转换输入值。因此,为了提高网络性能,开发人员可以使用权重精度较低的量化神经网络。效的量化神经网络是权重值和激活函数值只用+1 和 -1两个数值的二值化神经网络 (BNN)。因此,BNN神经网络对算力的要求非常低,然而准确度也差。
为什深度量化神经网络很重要?
业界面临的挑战是找到一种简化神经网络的方法,以便在微控制器上运行推理运算,同时又不把准确度降到让神经网络毫无用处的程度。为了解决这个问题,意法半导体和意大利萨勒诺大学的研究人员在深度量化神经网络DQNN上展开合作。DQNN网络只用较小的权重值(1 位到 8 位),并且可以包含混合结构,即只有一部分层是二值化,而另一部分层则用位宽更高的浮点量化器。意法半导体和该大学的研究人员发表的研究论文论述了哪种混合结构可以产生的结果,同时RAM 和 ROM的存储占用空间。
STM32Cube.AI 的新版本是这些研究活动的直接成果。7.2 版确实支持深度量化神经网络,充分利用二值化层的高效,同时不会丧失运算准确性。开发人员可以先用 QKeras 或 Larq 等开发框架训练神经网络模型,然后再通过 X-CUBE-AI处理训练好的神经网络。改用DQNN网络有助于节省占用空间,让工程师能够选用成本效益更好的芯片,或用一个微控制器代替多个设计整个系统。因此,STM32Cube.AI 继续为边缘计算平台带来更强大的推理能力。
从演示软件到市场趋势
如何开发人数统计演示软件?
意法半导体和施耐德电气近推出了双方合作利用 DQNN开发的一个人数统计演示软件。该系统通过处理热图像数据,在 STM32H7 上运行推理算法,来确定是否有人越过一条假想线,以及是从哪个方向进出的。元器件的选择非常引人注目,因为它宣扬物料成本相对较低。施耐德没有选用更昂贵的处理器,而是使用深度量化神经网络来大幅降低内存和 CPU 的占用,从而缩减了应用系统面积,并为成本效益更高的解决方案打开大门。两家公司都在 2022 年 3 月的 TinyML 展会期间展示了该演示软件。
如何克服边缘机器学习的炒作问题?
版权与免责声明
凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,//tgdrjb.cn,违反者本网将追究相关法律责任。
本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。
如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
- 揭秘嵌入式 MCU:浮点数据处理难点及应对策略2025/6/20 15:19:07
- 嵌入式通信 UART 大揭秘:经典面试题深度剖析2025/6/12 16:35:20
- 深度解析:STM32 ADC 自身误差来源大揭秘2025/6/6 16:08:32
- 嵌入式数模电中 MOS 管经典知识2025/5/26 16:26:08
- EMMC和NAND闪存的区别2025/4/30 16:52:00